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ABSTRACT

Techniques for predicting the vibration environments of future
aircraft based upon statistical extrapolations from data measured on
past aircraft are investigated. As a first step, principal sources of
aircraft vibration are identified, and analytical relationships for the
resulting vibration environment are approximated. Available AFFDL
data are then summarized and evaluated. Extensive statistical studies
are performed on the available data to investigate the average properties
of aircraft vibr'ation among the three orthogonal directions, various
structural zones, various aircraft models, and various aircraft groups.
The available data are also used to study the spatial distribution of
vibration levels within a given structurol zone. Specific prediction
models are then suggested and regression analysis procedures to arrive
at conservative prediction levels are detailed. The suggested techniques
are illustrated using available AFFDL data. Procedures for deriving
vibration test specifications based upon environmental vibration predic-
tions are suggested. Finally, possible extension of the techniques to the
prediction of internal acoustic noise are discussed.

This abstract is subject to special export controls and each trans-
mittal to foreign governments or foreign nationals may be made only
with prior approval of the Air Force Flight Dynamics Lahoratory,
Wright-Patterson AFB, Ohio.
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1. INTRODUCTION

The most critical step in the derivation of vibration and acoustic
design criteria and/or test specifications for modern aircraft is the pr.e-
diction of the anticipated flight vibration and acoustic environ:nents.

This usually involves the prediction of power spectra (or som: other
measure of frequency composition) for the environments. Cor sider
first the problem of predicting flight vibration environments.

There are two fundamental ways to approach the vibration predic-
tion problem. For the purpose here, these two ways will be referred
to as (1) analytical prediction procedures and (2) empir.cal extrapolation
prediction procedures. Analytical prediction procedures incl: de all
those techniques for predicting flight vibration environments wnich are
based upon calculating or measuring the response of a derived structural
model to an assumed excitation function. Such prediction pro<:dures

have been classified by Gray and Piersol [1] into four categ .rics, as

follows:
1. Classical (mathematical model) approach
2. Multiple input model approach
3. Physical model approach
4. Statistical energy approach

Analytical prediction procedures have been used with varying degrees of
success in the past. They all have the common characteristic, however,
of requiring detailed information about the structural design of the air-
craft in question, and the excitation functions to which it will be sub-

jected. Unfortunately, such information is rarely available in the
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necessary detail at the time when vibration predictions are most de-
sired (early in the design phase).

Empirical extrapolation prediction procedures include those tech-
niques which are based upon studies of data collected during flight tests
of previous aircraft. There are two basic types of extrapolation tech-
niques. The predictions raay be based upon data from a single vehicle
of similar design (specific extrapolation), or they may be based upon
pooled data from one or more general vehicles (general extrapolation).
The most commonly used specific extrapolation procedures are those
suggested by Condos and Butler [2], Barrett [3], and Winter [4]. All
three procedures employ a scaling formula to extrapolate vibration data
measured on a previous vehicle to predict the vibration of a new vehicle
of similar design based upon differences in the excitation pressure levels
and structural surface weight densities.

General extrapolation procedures are based upon empirically
derived correlations between the average vibration response character-
istics for a general class of structure and one or more parameters re-
lated to the excitation forces, structural properties, and/or flight con-
ditions for the aircraft of interest. A number of such procedures have
been proposed in recent years for missiles and spacecraft, ar well as
aircraft. One of the earliest to appear in the literature was the method
suggested by Mahaffey and Smith [5], which is based upon observed corre-
lations between structural vibration and jet engine acoustic noise for data
collected from the B-58 aircraft. These same data were modified by
Brust and Himelblau [6] to develop a prediction rule for the SKYBOLT
missile. Similar studies were performed by Eldred, Roberts, and White
[7] using data collected from the SNARK missile. Curtis [8] developed

an empirical prediction rule by observing correlations between aircraft
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structural vibration and free stream dynamic pressure using data
collected from the F-AU, B-59, F-101, and F-106 aircraft. From
JUPITER and TITAN I missile vibration and acoustic data collected
during stati;: firings, Franken [9] developed a procedure which predicts
radial skin vibration for missiles as a function of rocket engine acoustic
noise and skin surface weight density. A similar technique was de-
veloped by Winter [4] for predicting ring frame and stringer vibration
for missiles and spacecraft based upon JUPITER, TITAN, MINUTEMAN,
SKYBOLT, and GEMINI vibration and acoustic measurements.

All of the above general extrapolation procedures are similar in
that they permit the prediction of structural vibration levels in a future
flight vehicle without a detailed knowledge of the specific structural de-
sign, or the need for detailed data from a previous vehicle of similar
design. The advantage of such procedures is clear. They can be readily
applied to anticipated flight vehicles even at the preliminary design stage
before the detailed structural design has been established. The funda-
mental disadvantage is equally clear. Since the procedures do not use
detailed structural information for the flight vehicle design in question,
or specific data for a similar vehicle, they do not provide the potential
accuracy which an analytical procedure or a specific extrapolation pro-
cedure could theoretically produce under ideal conditions. In the opinion
of many contemporary environmental engineers, however, the fundamental
advantage of general extrapolation prediction procedures far outweighs
their disadvantage. This fact is clearly established by the current wide-
spread use of such procedures.

Noting the current availability of previously developed general
extrapolation procedures, an obvious question arises at this point,

namely, is there a need for an improved general extrapolation procedure
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for predicting aircraft vibration environments? It is believed that the
answer to this question is yes. A recent survey of the better known
flight vehicle vibration prediction techniques [4] indicates that all of the
general extrapolation procedures reviewed have limitations and de-
ficiencies of one form or another. The principal deficiencies are as

follows:

1. All of the procedures (with the notable exception
of the Curtis procedure [5]) require predictions
for the excitation environment. The resulting
vibration predictions can be no better than the ex-
citation predictions.

2. All of the procedures (again excluding the Curtis
procedure) were developed using acoustic induced
vibration data. Such procedures are fully useful
only for the prediction of takeoff (or liftoff) vibration
environments.

3. Most of the procedures were developed from data for
only a few (in some cases, only one) flight vehicles.
This clearly limits the generality of the procedures.

4. None of the procedures include provisions for pre-
dicting periodic contributions to the vibration environ-
ment from the rotation of jet engine shafts and/or
auxiliary equipment.

5. The statistical techniques used in the development of
the procedures were not always as thorough as would
appear to be warranted by the importance of the prob-
lem.

The above deficiencies, along with others, have tended to limit the
effectiveness of the various procedures in practice. Available compari-
sons between predictions and actual measured data [4] indicate that

errors in the predicted power spectra of 20 dB or more are common.
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In light of the above discussions, it is believed that the develop-
ment of an improved and more efficient general extrapolation prediction
procedure is a worthwhile task. For the case of aircraft vibration pre-
dictions, AFFDL is in a unique position to pursue such a task because
of their large and ever growing library of aircraft vibration data.

Now consider the problem of predicting flight acoustic environ-
ments (inside the aircraft). Conside;able attention has been given in
recent years to the prediction of the external acoustic noise generated
by jet and rocket engines, as well as the aerodynamic noise generated
by boundary layer turbulence during flight [10]. As previously noted,
such information is needed as an intermediate step in the prediction of
flight vibration environments. Except for the case of commercial air-
craft, however, somewhat less attention has been given to the
problem of predicting internal acoustic noise environments. This
relative lack of interest is unquestionably due in large part to the wide-
spread (and in most cases, accurate) belief that the internal acoustic
noise environment in aircraft is far less damaging to equipment than the
vibration environment. Furthermore, since the crew of noncommercial
aircraft generally wear protective head gear, relatively high acoustic
noise levels can be permitted inside the aircraft without posing a serious
hazard to the crew members.

For the case of commercial aircraft, internal acoustic predictions
are usually based upon calculations for the attenuation of aeroacoustic
loads by the aircraft structure and sound proofing, combined with esti-
mates for the noise generated by the airconditioning system and other
noise producing equipment. Because of the stringent competitive re-
quirements for passenger comfort, the predictions must be relatively

accurate. For the case of noncommercial aircraft, however, it appears
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that acoustic predictions v;rith the accuracy provided by a general ex-
trapolation procedure might be adequate. The statistical techniques
required to develop an extrapolation procedure for acoustic predictions
would be basically the same as those required to develop a procedure
for vibration predictions. Hence, it is believed that this constitutes a
worthwhile task to pursue along with the development of a general ex-
trapolation procedure for aircraft vibration predictions.

The primary purpose of the studies reported herein is to formu-
late a well defined program for the development of an improved extrapo-
lation procedure for the prediction of aircraft flight vibration environ-
ments. The intent is that AFFDL will implement the program using
AFFDL collected flight vibration data and computer facilities.

Secondary objectives of the studies include (a) a general evaluation

of currently available AFFDL aircraft vibration data and (b) the in-
vestigatior of improved techniques for converting aircraft flight vibra-
tion predictions into appropriate test levels and durations for aircraft
component vibration test specifications.

In order to establish proper statistical procedures and illustrate
their use, it was necessary during the course of these studies to perform
a considerable amount of data analysis. For convenience and clarity,
only summaries of pertinent results are included in this report. The de-
tailed results of the analysis are presented under separate cover in
Appendix A. Also as part of the work reported herein, a digital com-
puter program for the efficient. computation of power spectra using fast
Fourier transform techniques was developed and delivered to AFFDL.
The documentation for this fast Fourier transform power spectrum pro-

gram is also presented under separate cover in Appendix B.
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2., PROBLEM FORMULATION AND APPROACH

The basic approach to be pursued herein centers around the
development of a linear model for the power spectrum of aircraft flight

vibration. In general terms, the model will be of the form

G(f) = Ao(f) + Al(f) X1 + Az(f) XZ +... + AN(f) XN
(1)
N
= Ag(5) + 25 A X,
i=1
where
G(f) = the power spectral density for the vibration

response

Xi = the ith independent variable

the weighting factor for the ith independent

A(9)
variable :

A _(f) = the power spectral density for the residual vibration
0 . . :
(if any) when all independent variables equal zero

The variables, X’i (i=1, 2, 3 ..., N), ideally would cover all
factors which influence the flight vibration environment. Included would
be pertinent descriptive parameters of the aircraft structure, the engine
operating coxiditi;)ns, and/or the aircraft flight conditions. For example,
the Xi variables might be X. = structural weight density (w), X, = en-

1 2

gine exhaust gas velocity (Ve) , and X3 = dynamic pressure (q) . Note
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that a single variable might be a power, product, and/or quotient of
several parameters. For example, Xl = (q/w)z and X2 = Ve . Hence,
although Eq. (1) is a linear model, it can be applied to nonlinear re-
lationships as long as they are anticipated and properly incorporated
into the independent variables.

The weights, Ai(f) i=1, 2, 3, ..., N), establish the relative
contribution of each variable to the vibration power spectrum. For ex-

ample, if X, = w and Al(f) = 0, this would mean that the structural

1
‘'weight density has no influence on the vibration power spectrum at fre-

quency f. The Ao(f) weight accounts for any contributions to the

vibration power spectrum which occur when Xi =0(3=235 2, 8, -, M.

The development of a model of the form given in Eq. (1) involves
two general problems. The first is to select the variables to be used
in the model, and the second is to determine appropriate values for
the weights. These two problems along with statistical considerations

and the specific approach which hopefully will solve them are now dis-

cussed.

2.1 SELECTION OF VARIABLES

The selection of appropriate independent variables could be
approached by purely empirical procedures. This would be done by
simply guessing at all possible factors which might influence structural
vibration. Those factors which are actually related to structural vibra-
tion in a statistically significant way would then be determined through
a multiple correlation study of all available vibration data. Such an
approach, however, is considered unsuitable for the problem of concern

here.
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It is believed that a superior approach is to select the variables
based principally upon theoretical knowledge and well-established ex-
perience. This second approach provides important advantages. First,
assuming sufficient theoretical and experimental information is avail-
able, it increases the likelihood of selecting only those variables which
are relevant to the vibration environment. Second, it permits nonlinear
relationships, as well as product and quotient relationships, for various
factors to be anticipated and properly included into Eq. (1) as a single
variable in the linear model. The elimination of irrelevant variables
and nonlinear relationships in Eq. (1) will greatly increase the statistical
significance of the regression analys<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>